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We investigate the statistics of the number N(R, S) of lattice points, n E Z-', in 
an annular domain /7(R, w) = (R + w)A\RA, where R, w > 0. Here A is a fixed 
convex set with smooth boundary and w is chosen so that the area of/7(R, w) 
is S. The statistics comes from R being taken as random (with a smooth 
density) in some interval [c~ T, c, T], c2 > ct > 0. We find that in the limit T--* oo 
the variance and distribution of A N =  N(R; S ) - S  depend strongly on how S 
grows with T. There is a saturation regime S / T - ,  oo, as T-+ co, in which the 
fluctuations in dN coming from the two boundaries o f /7  are independent. Then 
there is a scaling regime, S/T---, z, 0 < z < oo, in which the distribution depends 
on z in an almost periodic way going to a Gaussian as z ~ 0. The variance in 
this limit approaches z for "generic" A, but can be larger for "degenerate" cases. 
The former behavior is what one would expect from the Poisson limit of a 
distribution for annuli of finite area. 

KEY WORDS: Energy-level statistics; integrable quantum systems; lattice 
point problem. 

1. INTRODUCTION 

T h i s  p a p e r  c o n t i n u e s  o u r  s t u d y  o f  t h e  d i s t r i b u t i o n  o f  i n t e g e r  l a t t i ce  p o i n t s  
i n s ide  a " r a n d o m "  r e g i o n  o n  t h e  p l a n e ,  t8'17'6'7'9'1~ W h i l e  t h e  q u e s t i o n  c a n  

be  t h o u g h t  o f  as  n u m b e r - t h e o r e t i c ,  o u r  m o t i v a t i o n  c o m e s  p r i m a r i l y  f r o m  

t h e  i n t e r e s t  in t h e  d i s t r i b u t i o n  o f  e i g e n v a l u e s  o f  q u a n t u m  s y s t e m s .  T h e  

l a t t e r  p r o b l e m  h a s  r e c e i v e d  a g r e a t  d e a l  o f  a t t e n t i o n  in r e c e n t  yea r s ,  w i t h  
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particular emphasis on the question of how the statistics of eigenvalues 
relates to the nature of the corresponding classical dynamical system. 

One of the striking conjectures is a universality of the local statistics 
of eigenvalues of generic quantum Hamiltonians: for integrable systems the 
local statistics is Poissonian, while for hyperbolic systems it is the Wigner 
statistics of the ensemble of Gaussian matrices. This conjecture is based on 
a number of analytical, numerical, and experimental results (see, e.g., 
refs. 1, 12, 20, and 19) and the task of theory is to explain them and to find 
out their range of validity. To see the connection between the lattice-point 
problem and the statistics of eigenvalues in the integrable case, consider a 
simple model system, a free particle in a rectangular box with periodic 
boundary conditions. In this case the eigenvalues are 

9 n~ n; 
E,,  = _-Z + _- ~ , n = ( n l , n 2 ) ~ Z  2 

a I a 2  

where 2naj, 2rta2 are the sides of the box. The problem then is: what is the 
statistics of the numbers E ,?  This is clearly the same problem as finding 
the statistics of lattice points inside a suitable ellipse. More generally, we 
may consider integrable systems with eigenvalues 

E,,=I(nt--ctL,n2--ct2), n=(nt,n2) (1.1) 

where (possibly after some rescaling 13)) I(Xl,X2) is a homogeneous 
function of second order and ask about the statistics of E,.  Now, in the 
sequence {E,,,neZ 2} there is nothing random, so the first question is, 
what do we mean by statistics of the sequence E,,? To describe it, let us 
consider the sequence of energy levels E,  in the interval [E, E +  S] with 
E~>S>> 1 (the average spacing between levels is of order of 1). Assuming 
that E is uniformly distributed on an interval clT<~E<~c2T, we may 
consider the sequence XE= {E,,-E:E<~E,,<E+S} as a random one. 
The question is: does the limit distribution of XE exist, when T ~  ~ and 
S is a prescribed function of T. Is this limit distribution Poisson? 

This problem was considered originally in the work of Berry and 
Tabor t3) (see also the review papert~)), where convincing physical arguments 
were presented in favor of a Poisson limit distribution. In particular, the 
distribution of the distances between neighboring levels was found numeri- 
cally to be exponential, which fits to Poisson statistics. Sinai c3~ and 
Major t25~ (see also ref. 5) studied rigorously the Poisson limit distribution 
in a model lattice problem. They showed that for a typical (in a probability 
sense) oval in a plane the number of integral points in a random narrow 
strip of a fixed area between two enlarged ovals has a Poisson distribution. 
Major proved also some other results in this direction, and he showed that 
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a typical oval from the probability spaces which were used in his work and 
in the work of Sinai does not belong to C 2. For typical smooth, say C 4 - ,  
ovals the Poisson conjecture for the number of integral points in a random 
narrow strip of a fixed area remains open; see ref. 18 for some related 
results in this direction. 

In a different direction Casati etal. (~4) argued that the sequence Of 
levels cannot be considered as truly random. In fact, Casati et al. ('3) found 
numerically a saturation of rigidity at large energies, which gave an 
estimate of the range of the applicability of the Poisson conjecture (the 
rigidity is a statistical characteristic which estimates how well the counting 
function of the energy levels is approximated locally by a linear function; 
it was introduced by Dyson and Mehta in their studies of ensembles of 
Gaussian matrices(261). 

Berry (2) carried out an analytical analysis of the saturation of the 
rigidity. He showed that the rigidity has a crossover at the scale of S of the 
order E'/2, where E is the energy, from linear Poisson-like behavior to a 
saturation. Berry's computations were not completely rigorous, and he also 
used tacitly some assumptions on nondegeneracy of the spectrum. In the 
present work we carry out a rigorous study of the statistics for all cases in 
which S --* ov as E ~ for 6 >/1/2. 

1.1. Informal Sta tement  of Results 

We will consider averages related to the classical limit theorems of 
probability theory. Let N(E, S)  be the number of E,  in (E, E + S ] .  The 
question is, what is the asymptotics of Var N(E, S)  and what is the limit 
distribution of IN(E,  S ) -  <N(E, S)>] / [Var  N(E, S ) ] m ?  This problem 
has an obvious interpretation as a lattice problem. Referring to (1.1), 

N(E, S)  = # {n ] E < I(n, - ~,, n 2 -- ctz) <~ E + S} 

is the number of lattice points in the annulus 

E < l (x ,  - c t l ,  x2-Ctz)  <~ E + S 

What we prove in the present article can be informally summarized as 
follows. Let 

Then obviously 

N(E) = # {E,,: E,,<~E} 

N(E, S)  = N ( E  + S)  - N(E)  
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We prove that i f E ~  0% S/E-*O, and S/E 1/2 ~ 0% then N(E+S)  and 
N(E) are asymptotically independent, so 

Var N(E, S) ~ Var N(E + S) + Var N(E) 

It was shown in ref. 6 that 

Hence 

Var N(E) ~ VoE l/z 

Var N(E, S) ~ 2Vo El/z 

Similarly, the distribution of 

N(E, S ) -  (N(E, S))  
E 1/4 

converges to the distribution of a difference of two independent identically 
distributed random variables, whose distributions coincide with the limit 
distribution of F ( E ) =  [ N ( E ) - ( N ( E ) ) ] / E  1/4. The existence of a limit 
distribution of F(E) for the circle problem, was proved in refs. 22 and 8. 
Results for general ovals were proved in ref. 6 and properties of this limit 
distribution were studied in ref. 7. It was shown that in a generic case this 
limit distribution possesses a density which decays at infinity roughly as 
exp( -Cx4) .  [The distribution of F(E) and parameters Vo, C, etc., depend 
on I and on  ~,(9,7) but we do not indicate this explicitly.] 

In the regime E --* c~ and S/E 1/2 ~ z > 0, we prove a scaling behavior 
of the variance, 

Var N(E, S) ~ E 1/2 V(E- 1/2S) 

and we compute the scaling function V(z) as an infinite series. This gives 
V(z) as an almost periodic function, so it is oscillating and has no limit at 
infinity. We show that 

lim 1 f: r~ ~ T V(z) dz = 2Vo 

and in a generic case (for instance, for almost all ellipses), 

V(z)~ z (1.2) 

as z--, O. This implies that when z ~ 0, 

Vat N(E, S )~  S (1.3) 
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which is consistent with a Poisson distribution. The relation (1.2) is 
violated in degenerate cases. For instance, we show that for the circle with 
center at any rational point ~ = ( ~ ,  ~2) the behavior of V(z) is given by 

V(z)~Cz [log z[, z ~ 0  (1.4) 

This anomalous behavior of V(z) is related to an arithmetic degeneracy of 
the circle problem: for some k e N there are many representations of k as 
sum of two squares, so that there are many lattice points at the circle 
{ Ix[ = kin}. On the average, the number of representations grows as log k, 
which shows up in the log correction to linear asymptotics of V(z) as z ~ 0. 
Note that recently Luo and Sarnak c2s) found deviations from the Wigner 
statistics for an "arithmetic" hyperbolic system (see also the earlier physical 
paper~l)), which are related as well to an (arithmetic) degeneracy of the 
problem. For a circle with center at a Diophantine point ~ in [0, 1] 2, the 
behavior is normal, satisfying (1.3). 

We prove also the existence of a limit distribution of 

~(E, S ) -  (N(E, S)) 
[Var N(E, S)] 1/2 

in the regime S/T---,z. The limit distribution is not Gaussian and in a 
generic case its density decays at infinity roughly as exp( -Cx4) .  However, 
when z ~ O  this limit distribution converges to a standard Gaussian 
distribution. 

1.2. Precise Formulat ion of Problem and Results 

Let I(x) be a homogeneous convex function of order 2 on the plane, 
so that 

I(2x)=2ZI(x)>O, V2>0,  x~R2\{0}  (1.5) 

02I(x) ) OXiOXj/li.j=l,2~>O, Vx~R2\{O} (1.6) 

We will assume in addition that 

I(x) e CV(R2\ {0}) (1.7) 

Let ~ ~ R z. Consider 

No(E; ~) = # {n ~ Z2: I(n - cx) <~ E} 

which gives the number of lattice points in the convex region 
{x6 R2: I(x-~)<~ E}. We are interested in the behavior of No(E; ~) when 

is fixed and E--* oo. 
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In what follows we will use the parameter R = E 1/2 instead of E, and 
we define 

N(R; ct) = No(R2; ct) 

Then N(R; ~t) has a geometric interpretation as the number of lattice points 
inside the convex oval ~ + R ? ,  where ? =  { x e R Z : I ( x ) =  1}. For  large R, 
N(R; ct) is approximately equal to the area of the interior of ct + R?, which 
is 

Area{Int(ct+ R T ) } = A R  2, A = A r e a { I n t ? }  (1.8) 

so the problem is the behavior of the error function 

AN(R; ct) = N(R; ct) - AR'- (1.9) 

Figure 1 presents AN(R; ct) for the circle centered at ~ = 0 ,  so that this 
is the error function of the classical circle problem. AN(R; ~) behaves very 
irregularly also for other ct, so we may think of AN(R; ~) as a random func- 
tion of  R, and ask, what are the statistical properties of AN(R;ct)? By 
statistical properties we mean some averages of functions of AN(R; ct), 
obtained by weighing R according to some weight. The statistical proper- 
ties of AN(R; ct) were studied in refs. 22 and 8 for a circle and in refs. 6 and 
7 for a general oval curve of the following class, which includes (1.5)-(1.7): 

Fig. 1. Error function of the circle problem. 
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Class r. y e F if y is a C7-smooth convex closed curve without self- 
intersection in a plane, such that the origin lies inside y and the curvature 
of 7 is positive at every x e),. 

Let us normalize AN(R; ~) to 

F(R; ct) = R -  UEAN(R; or) (1.10) 

and denote by Cb(R 1) the space of bounded continuous functions on R ~. 
Let 

0~<c, <cz  (1.11) 

be fixed numbers, and ~p(c)>/0 be a fixed bounded density on [c~, c2] with 
normalization 

' fi ,c, - d c =  1 (I .12)  
C2 Cl 

T h e o r e m  A. ~6~ Assume ~,eF. Then there exists a probability 
measure v:(dt) on !i I such that Vg(t)e Cb(R 1 ) and V~o(c), 

lim (c lc fc, r g[F(R; ~o(R/T) d R - f ~  v,(dt) (1.13 r - - ~  2-- I )T  :,'T 0t)] -- g(t) ) 

In addition, 

1 fC2rFtR;ct) tp(R/T)dR=f~ tv,(dt)=O l i m  (1.14) 

and 

c 'c lim F(R; a)2 ~o(R/T) dR = t2v~(dt) 
T - ~ ( 2 -  t )  , -~o  

(1.15) 

Note that v,(dt) does not depend on ~o(c). ~o(c)= 1 corresponds to a 
uniform distribution of R on [ciT, c2T], and ~0(c)=2(c~+c2)-1c 
corresponds to a uniform distribution of E =  R z on [(ct T) 2, (% T)2]. 

Theorem A shows that typical values of AN(R; ct) are of order R ~/2, 
and v,(dt) is a limit distribution of R -  ~/2AN(R; ~) assuming that R is nicely 
distributed on [cl T, c2T] and T--* or. 

In the preseht work we are interested in the statistics of the increment 
AN(R + w; ct)-- AN(R; ~). This increment has a clear geometric meaning as 
a difference between the number of lattice points in the annular strip 
H(R, w; ct) between two ovals, ct + Ry and ct+ ( R +  w)y, and the area of 
H(R, w; ct). Our aim is to find the statistics of AN(R + w; r - AN(R; ct). To 
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formulate the problem precisely, we fix the area S of H(R, w; ~). We will 
assume, for normalization, that 

Area{Int V} = I (1.16) 

Then w > 0 is a positive solution of the quadratic equation 

2wR + w'- = S 

Let 

(1.17) 

w=(S /R) { I  + [1 +(S/R2)] ' /2} - '=  [S/(2R)][1 +O(S/R2)] (1.18) 

AN(R, S; ~) = AN(R + w; c~) -- AN(R; c~) (1.19) 

with w given by (1.18). Then 

AN(R, S; ~) = No(E+ S; ~) - No(E; e) - S, E =  R 2 

and the first problem we are interested in concerns the asymptotics of the 
second moment of AN(R, S; ~), 

1 c2 T 

D(T,S;~)  (c2--c~)TIc, r [AN(R,S;~)]Z q~(R/T)dR (1.20) 

as T--. oo. Our aim is to prove the following scaling of D(T, S; ~): 

Scaling Behavior. 

(I) lim T-tD(T,  S ; ~ ) =  V(~)>0 (1.21) 
S / T  2 ~ O , S / T  ~ oc 

(II) lim T - t D ( T , S ; e ) = V ( z ; e ) > O ,  Vz>O (1.22) 
T ~  o v , S / T ~  z 

(III) lim z-~V(z; co) = 1 for typical 7 (1.23) 
z ~ O  

In fact we prove (I) and (II) for all Y ~ F and we compute V(~) and 
V(z; c~). (III) will be shown to hold for generic Y, i.e., when Y has no 
symmetries which give rise to multiplicities of the eigenvalues. In general, 
the behavior of V(z;~) as z--*0 will depend on the relevant group of 
symmetry. Observe that (III) implies that if SIT is a fixed small number 
and T is sufficiently big, then S-~D(T, S; ~) is close to 1. For a Poisson 
point random field of density 1 in the plane the variance of the number of 
points in a domain of area S is equal to S, so Eqs. (1.21)-(1.23) describe 
a_transition from a Poisson-like asymptotics at (III) (for typical Y) through 
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a scaling at (II) to a saturation at (I). A very interesting problem is to 
extend (III) to 

(III') lim S - ' D ( T , S ; ~ ) = I  
T ~  ~ . S / T ~  0 

It is generally accepted by physicists that this should hold generically; see 
ref. 2 for arguments in this direction. We in fact believe that (III') holds for 
every oval 7 satisfying some Diophantine hypothesis, but we will not 
discuss this point in the present article. 

The second problem concerning AN(R, S; ~) we are interested in is 
the existence and the scaling for a limit distribution of appropriately 
normalized AN(R, S; ~). This will be considered below. 

Notation. For 4 ~ R 2, 4 ~ 0, consider the unique point x(4) ~ 7, where 
the outer normal vector to y, n,.(r coincides with [41-1 4. Denote 

Y(4) = 4-x(4) (1.24) 

where a.b=alb~+azb2 for a ,b~R 2. The curve y * =  {4: Y(4)= l} is 
known as the polar of y. Note that (1/2) y2(r is the Legendre transform 
of �89 

(1/2) y 2 ( ~ ) = _  inf ( �89 (1.25) 
.x'E R 2 

Let 0 <  Y~ < Y2 < ... be all possible values of Y(n) with n~Z2\{0}.  
Define 

u=(k) = ~ e(n .~) Inl-3/2 [p(n)]~/2 
n ~ Z2:  Y(n )  = Yk 

where P(4) is the radius of curvature of ? at x(4) and 

e( t ) = exp(2rtit) 

Let 

(1.26) 

(1.27) 

1 it2 
Jr = (c2-cl)  ,, cqg(c) dc (1.28) 

T h e o r e m  1 . 1 .  A s s u m e  ? ~ F. Then 

lim T -  t 1 [,., r (c2--ci) T J,.~'r [dN(R, S; ~)]z (p(R/T) dR 
S / T  ~ o o , S / T 2  ~ O  

= V ( ~ ) = J r  W(~) (1.29) 
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with 

W(~)=rt  -z ~. lu~(k)J 2 (1.30) 
k=l  

Coro l l a ry .  If ~,~ F, then 

lim lim T_ l 1 (T~t+J,-~ 
A,.~O S/T--~v,S/T2--O "T~cJT JAN(R, S;cQ]ZdR= W(~) (1.31) 

T h e o r e m  1.2. I f T e F ,  then 

lira T -1 1 ~,.2r 
T--~,S/T~z (C2----cI)TJc, T [AN(R'S;~ 

fc2 
1 cqg(c) W(z/c; or) dc (1.32) = V(z; c~)= (c2-cL) ~ 

W(z;~)=Tt -2 ~ [u~(k)[ 2 [ '1-cos(nY~z)]  (1.33) 
k=l  

Coro l l a ry .  If V ~ F, then 

lira lim T_ ~ 1 frll+~,'l JAN(R, S;~)]2dR= W(z;cQ (1.34) 
Ac~O T ~ c ~ , S / T  ~ z - T ~ c  ~ T 

The scaling function W(z;~) represents a local averaging of 
[AN(R,S;eL)]'- Comparing (1.31) with (1.34), one would expect that 
lim . . . .  W(z;~)= W(~). Formula (1.33) shows, however, that this is not 
true: W(z, ~) is an almost periodic function of z, so it oscillates at infinity. 
What is true is that on the average W(z; ~) converges to W(~), that is, 

lira W(z; c~) dz = IV(e) (1.35) 

Another interesting problem is to find the asymptotics of W(z; e) when 
z ---, 0. We shall prove that it is universal in a generic situation. To that end, 
we introduce the following class of ovals: 

Class r o. 7 e F  o i f y ~ F a n d  Y ( m ) = Y ( n ) i f a n d  o n l y i f m = n .  

Since F0 is defined through a countable number of inequalities 
{ Y(m)P Y(n), m~n} ,  we may think of F o as of the set of generic ovals. 

Bleher and Lebowitz 

with 
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In the case when the oval y is symmetric with respect to the origin, the 
condition that Y ( m ) =  Y(n) only if m = n is certainly violated, since then 
Y ( - n )  = Y(n). 

To cover this case we introduce the following class of ovals. Let G be 
the group of all isometrics i: R z ~  R 2 of a plane such that i ( 0 ) = 0  and 
i(Z 2) = Z 2. The group G consists of eight elements. Let H be a subgroup 
of G. We say that an oval 7 is invariant with respect to H if gy = y for every 
g e H .  

C l a s s  to(H), y e Fo(H) if y e F is invariant with respect to H, and 
Y(m)=  Y(n) only i f m = g n  for some g e H .  

For  y e F o ( H )  and c teR 2, consider a subgroup H,  c H  such that 
g e H= if get = ct + n with some n e Z z. Let 

m=(H) = IH=I (1.36) 

be the number  of elements in H=. 

T h e o r e m  1.3.  If 7 e Fo(H), then 

lim z - l W ( z ;  or)= m=(H) (1.37) 
z ~ 0  

Remarks.  (1) If y ~ F o ,  (1.37) reduces to l i m : _ o z - ' W ( z ; c t ) = l .  
(2 )No te  that if m e c t + R y  and g e l i d ,  so that ge t=or+n ,  then 
gm ~ ga + Rg7 = ct + n + RT, hence gm - n e ~ + Ry. For  a typical m e Z 2 the 
points g m -  n, g e H=, are different, and therefore m=(H) is the multiplicity 
of integer points on ct + Ry, caused by the symmetry. 

A circle with center at the origin is invariant with respect to G. 
However, the circle does not belong to F0(G), since for some k e N there 
exist many different representations of k as a sum of two squares, which are 
not related to any symmetry. The number  of such representations grows, 
on the average, as log k and this shows up in the behavior of W(z; 0). 

A vector 0 t ~  R 2 is called Diophantine if there exist C, N >  0 such that 
for all n ~ Z 2 \ { 0 } ,  

In . cd >~ C ln[ - N 

T h e o r e m  1.4.  If),  is a circle with the center at the origin, then 

lim (z I logzl)  - I  W(z;c t )=C=>O for every r a t i ona l c t eQ  2 
Z ~ 0  

lim z - ~ W(z; a) -- 1 for every Diophantine c< 
z ~ 0  
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Remarks.  (1) From the proof of Theorem 1.4 below an explicit for- 
mula for C= follows. For instance, for ct=0, C==6n -1. (2) Theorem 1.4 
can be extended to any ellipse with rational ratio of squared half-axes 

2 2 
a l / o  2 . 

Theorems 1.3 and 1.4 are illustrated in Figs. 2-4, which present the 
scaling function W(z; ct), respectively, for a circle with ct--(0, 0), for an 
ellipse with ratio of axes 1/n and a = (0, 0), and finally for the same ellipse 
with ct= (0.1, 0.1). The behavior of W(z; a) as z ~ 0  is readily seen in the 
figures to be consistent with that given in Theorems 1.3 and 1.4; the slope 
being infinite in Fig. 2, 4 in Fig. 3, and 1 in Fig. 4. 

Now we consider the existence of a limit distribution of 

F(R, S; ct) = R -1/2 AN(R,  S; r 

Let v,(dt) be the limit distribution of F(R; ct) (see Theorem A above). 
Denote by v~ (dt) the distribution obtained by reflection of v~(dt), so that 

b - - a  

T h e o r e m  1.5. I f ~ e F ,  thenVg(t)eCb(R~), 

1 ~,.2r ~ 
lim .... g(t) #=(dt) s/r~ ~.s/r: ~ o (c2 ----c i ) T J~, r g(F(R,  S; ct)) qg(R/T) dR = 

with ~ = v= * v~-, where �9 denotes convolution. 

10 ~ - - r  ' , I ' 

. /  

6 . . "  

2 4 6 8 10 
z 

Fig. 2. Scaling function of the circle problem. 



Energy-Level Statistics 179 

4 

/.-Y 

/ /  
/..'" 

/ 

.../.."" 
.: /." 

.: ...." 
.: .'" 
. ./' 

. . .  

6 8 10 
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Fig. 3. Scaling function for an ellipse with a t / a  2 = 1/n, ~x = (0.,  0 .) .  

/ 

/ 

../ 

/�9 

/ . " /  

2 4 6 8 
Z 

Fig. 4. Scaling function for an ellipse with a~/a2 = l / n ,  0t = (0.1, 0.1 ). 
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A simple explanation of Theorem 1.5 is that when S / T ~  ~ ,  i.e., when 
the annulus is "thick," F(R+w;a)  and F(R;a)  are independent random 
variables in the limit T ~  ~ ,  assuming that R is uniformly distributed on 
[cl T, c2 T], so 

F(R, S; ~) ~ F(R + w; ~) - F(R; ~) 

is a difference of independent random variables. 

T h e o r e m  1.6. If 7 e F, then for every z > 0 there exists a probabil- 
ity measure #~(dt; z), which depends continuously, in the weak topology, 
on z, such that Vg(t)e Cb(Rl), 

1 r ,2 r 

T-- ~.s/r--lim : (C2 -- Cl) T~,T | g(F(R, S; o~)) rp(R/T) dR 

(c2-- cl) q~(c) -~. g(t) p=(dt; z/c) 

C o r o l l a r y .  

1 f rlj+~'l ~ 
lim lim T-Ac Jr  g(F(R, S; ~)) dR = g(t) p~(dt; z) 

,dc ~ O  T ~ c c ~ , S / T ~ z  - ~  

T h e o r e m  1.7. For every g(t)ECb(Rt), ~ g ( t ) # = ( d t ; z )  is a 
continuous almost periodic function in z, and 

l i ra  1 f :  dz f-~o~ g(t) g~(dt; z ) =  f - 2  g(t)i~=(dt) 

Our next goal is to describe properties of the measures l~=(dt; z). To do 
this, we need some conditions of incommensurability of the frequencies 
Y(n). Define M c Z  2 as M = M o w  M ~ with 

Mo = {(0, 1), (1, 0), (0, - 1 ) ,  ( -  1, 0)} 

MI = {n = (n I , n2) L In~l, In21 are positive and relatively prime} 

In some respects M plays the role of the set of prime numbers on the lattice 
Z 2. Define now: 

Class I "  1 . An oval 7 belongs to Fl if ~,~F and the numbers 
{ Y(n); n e M} are linearly independent over Q. 

It is clear that F l c  Fo, so F~ does not contain symmetric ovals. To 
cover the case of symmetric ovals let us consider a subgroup H c G. 
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Consider any fundamental domain M ( H )  ~ M for the action of H on M, 
i.e., for every n e M there exists a unique m ~ M ( H )  such that n = g m  for 
some g ~ H. Define: 

C l a s s  I ' I ( H ) .  An oval ), belongs to FI(H)  if 7 is invariant with 
respect to H, and the numbers { Y(n); n e M(H)} are linearly independent 
over Q. 

As an example consider 

go: (x~, x2) -* - ( x , ,  x~), gl: (x~, x~ --,, ( - x , ,  x~) 

g2: (x i ,  x2) ~ (xl,  --x2) 

and 

H o = { Id, go } 

H I 2 =  {Id, go, gl ,  g2} 

which are, respectively, the symmetry group with respect to the origin and 
the symmetry group with respect to the coordinate axes. A general class of 
ovals which belong to F~(Ho) and FdHI2)  is described in ref. 7. A charac- 
teristic example is an ellipse with transcendental ratio of half-axes. 
In general, the condition that the numbers Y(n), n e M ( H ) ,  are linearly 
independent over Q (or, equivalently, over Z), is equivalent to a countable 
number of inequalities 

N 

rkY(nk)v~O, r k e Z  
k = l  

and this condition can be viewed as a condition of a "generic" situation. 

T h e o r e m  1.8. If y e F ~ ( H )  for some H c G ,  then for every z > 0 ,  
t~=(dt; z) possesses a density 

i.t=(dt; z) 
p,( t;  z) = - -  

dt 

which is an analytic (entire) function of t e C ,  and for real t, Ve>0, 

0 <~ p=(t; z) <~ C exp( - 2 t  4) 

P = ( - t ; z ) ,  1 -P , ( t ; z )>~C'~exp( -2 ' , t4+~) ,  t>~O 

where P,(t;  z) = ~' ~ p=(t'; z) dt' and C, 2, C',, 2~ > 0. 

(1.38) 

(1.39) 
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T h e o r e m  1.9. The previous theorem holds for a circle with the 
center at the origin, with a slightly weaker estimate, instead of (1.38): 

0 <% p~(t; z) <~ C~ exp( --}Lrl 4 -  ' )  

P=(-t; z), 1 - P=(t; z) >1 C'~ e x p ( -  2', d + ~'), t>~0, Ve>0  
(1.40) 

If p(dt) is a distribution of a random variable r with zero mean, 
denote by f~(dt) a distribution of the normalized random variable 
~/(Var ~)1/2. Then 

f~' t2~(dt)= 1 

Now we describe the limit behavior of the measure f~(dt; z) when z ---, 0. 

T h e o r e m  1.10. I f T e F ~ ( H )  for some H o G ,  then lim.._ofl~(dt;z) 
is a standard Gaussian distribution. 

T h e o r e m  1.11. If Y is a circle with the center at the origin, then 

lim ~(dt; z) 

F( R; oO = 

with 

is a standard Gaussian distribution. 

The proof of the above results makes use of the fact, first noted by 
Heath-Brown, (22) that the parameter R in F(R; or) can be thought of as a 
time parameter in a flow on an infinite-dimensional torus. Statistical 
properties of F(R; ~) are therefore related to ergodic properties of almost 
periodic functions. These in turn can be obtained by suitable approxima- 
tions as quasiperiodic functions, i.e., by flows on a finite-dimensional torus, 
which is a part of standard ergodic theory. To carry out this program we 
devote the next section to the derivation of some general result on the 
ergodic properties of almost periodic functions in the Besicovitch space B 2. 
Before doing that, however, we restate a theorem from ref. 6 which shows 
that F(R; ~) belong to B 2. 

Theorem B. If ? e F, then for every cc e R 2, F(R; ct), as a function of 
R, belongs to the Besicovitch space B 2. A Fourier expansion of F(R; ct) in 
B 2 is given by the formula (see Section 2) 

-t  ~ inl-3/2[p(n)]l/2cos[2ztRY(n)+~(n;ct)] (1.41) 
nEZ2\{0} 

3~ 
<b(n; ~ ) =  27rn . ~ - - - -  

4 
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Using the notat ion (1.26), we can rewrite the Fourier  series (1.41) as 

F ( R ; ~ ) = r c - '  ~" lu,(k,lcos(2nYkR+O,(k,-~-~), O,(k,=argu=(k) 
k = l  

(1.42) 

We shall derive Theorems 1.1, 1.2, and 1.5-1.7 from Theorem B and 
some general results on almost  periodic functions in B 2. These general 
results are formulated and proved in the next section. To  prove 
Theorems 1.3, 1.4, and 1.8-1.11 we need more  refined arguments.  

2. S O M E  GENERAL RESULTS ON A L M O S T  PERIODIC  
F U N C T I O N S  

In this section we will prove some prepara tory  results on a limit 
distribution of the values of an almost  periodic function. We will use the 
Besicovitch space B 2 of a lmost  periodic functions. A function F(R) on 
{0 < R < ~ } belongs to B 2 if for every e > 0  there exists a tr igonometric 
polynomial  

N~: 

P ~ ( R ) =  Z a,,~exp(i2,,~R) (2.1) 
n = ]  

lim sup IF(R) - P~(R)I 2 dR < ~ (2.2) 

such that 

For  F(R)~ B 2 we can define 141 

It is to be noted that  11"11~2 is only a seminorm and not a norm, i.e., 
IIF(R)IIB2=0 does not imply F(R)=O. For  instance, if l i m r ~  ~ F ( R ) = 0 ,  
then IIF(R)I[B2 = 0. The Fourier  coefficients of F(R) E B 2 are defined as 

a(2)= :im l f :  F(R)exp(-i)~R)dR (2.4) 

It is known that a ( 2 ) r  at most  only for countably many 2 = 2 , ,  n ~ N ,  
and that IIF(R)lle~=O if all a ( 2 , ) = 0 .  We shall use the notat ion 

F ( R ) =  ~ a(2,)exp(i2,,R) (2.5) 
t l =  1 

which shows that  a(2 , )  are the Fourier  coefficients of F(R). 

82274:1-2-13 
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and 
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For F(R)~ B 2 we have the Parseval identity (4) 

lim IF(R)I 2 dR= la(2,)l 2 (2.6) 
T ~  at: n = 1 

1 fv F(R)- ~ exp(i2,,R) 2 lim lira sup -~ a(2,,) dR=O (2.7) 
N ~ o c ,  T ~ o o  l a 0  n = l  

If F(R) is real-valued, then a ( - 2 , )  = a(2,,), and the Fourier series (2.5) can 
be rewritten as 

F (R)=  ~ b(2,,)cos(2,,R+~b,,), 2,,>~0 (2.8) 
/ l =  1 

Then the Parseval identity has the form 

(IIF(R)IIB~)2=b(O)=+ (1/2) ~ b(2,,) 2 (2.9) 
n :  2n :# 0 

We have also a more general formula: 

n :  2 .  :# 0 

The Schwarz inequality and (2.2) imply 

lim sup rain{ 1, [F(R)-P~.(R)I} dR<~ (2.11) 

We shall use the following theorem from ref. 6. 

T h e o r e m  G. If F(R)e B 2, then there exists a probability distribu- 
tion v(dx) on li l, with a finite variance I ~  xZv(dx), such that for every 
probability density q~(x) on [0, 1 ] and every bounded continuous function 
g(x) on R [, 

lim ~ g(F(R)) q)(R/T) dR = g(x) v(dx) (2.12) 
- - 6  

In addition, 

lira I~rF(R)  dR=I~ xv(dx)=a(O) 

b(2,,) 2 cos(2,,t) (2.10) 
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and 

.m';o I r - ~  T IF(R)I2 d R =  x2v(dx) 
- o o  

The distribution v(dx) defined by (2.12) is called the distribution 
o fF (R) .  

The definition of the space B z and all the discussed properties of almost  
periodic functions from the space B z, including Theorem C, admit  a straight- 
forward extension to vector-valued functions F ( R ) =  (FI(R)  ..... Fk(R)). 

We shall call a joint  distribution of k almost  periodic functions 
G(R) ..... Fk(R)  the distribution of the vector function F ( R ) =  
(F~(R) ..... Fk(R)). Here, in principle, Fj (x)  can also be a vector-valued 
almost  periodic functions, but we shall not use this case. 

It is notewor thy that if the Fourier  frequencies 

" ' t l  ) ~'"~ t n 

of F t (R)  ..... Fk(R) are linearly independent over Q, i.e., if 

NI Nk 

E . ( 1 , ~ ( 1 ) .  r ( , ) ~ Q  t n  ~ 'n  T -~- E ~ ( k l T ( k )  __ O ,  . . .  i t l  #l-tl 

n =  1 n =  [ 

implies 

NI Nk 
E . . ( 1 ) ] 1 1 )  E " ( k ) ] l k ) - - - - O  t n ,/1. tr ~ " ' " ~ f n ~" n 

it= I n =  | 

then a joint distribution of FI(R)  ..... Fk(R ) is a product  of the distributions 
of F d R )  ..... Fk(R), so that F t (R)  ..... Fk(R) are independent. 

We shall prove the following theorem: 

T h e o r e m  2.1.  Let F ( R ) ~ B  2 and W = W s ( R ) > O  be a positive 
solution of Eq. (1.17). Then for every q~(c)EL~-'([c~, c2]) which satisfies 
(1.12) and every continuous function g ( x ) = g ( x ~ , x z )  on R 2, such that 
g(x l ,  x2) , 2 = O(x  i + x2), when x~ + x_~ ~ ~ ,  

lim 1 f,.., r g(F(R + ws(R)),  F(R))  ~o(R/T) dR 
SIT . . . .  s/r" ~ o (C2 --  Cl) T .Jt.l T 

= I_L I:~ g(x,, x2)v(ax~)v(ax2) (2.13) 

where v(dx) is the distribution of F(R). 
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The condition S/T--* oo implies that ws(T)--,  oo. Theorem 2.1 shows 
that in this case, assuming also that SIT 2 ---, O, F(R + ws(R)) and F(R) are 
asymptotically independent. A heuristic explanation of this result is that the 
averaging in two different scales, R and ws(R), is independent in the limit 
T-+ oo. 

Proof of  Theorem 2. I. We will prove (2.13) first in a particular case, 
when g ( x ) =  g(xl ,  x2 )~C~(R2) ,  i.e., g(x) is a C~-function With compact 
support, and q~(c)= 1. We will then consider the general case. 

The condition g(x )~  C~(R 2) implies that for all x, y ~ R 2, 

Ig(x) -g(Y)l  ~< Co min{ I, Ix -yL}  (2.14) 

with some Co>0.  So from (2.11), 

1 f c2T 
( c 2 _ c l ) T  j,~ r [g(F(R + ws(R)), F(R)) 

- g (P~ (R  + ws(R)), P~(R))I dR <~ Ca ~ (2.15) 

with some C, > 0. 
We can choose frequencies col ..... cok, which are linearly independent 

over Q, such that all 2,~ in (2.1) are linear combinations of col ..... r k, with 
integer coefficients. Then 

P~(R)= ~ a,,exp(incoR) (2.16) 
n ~ M  

where M c Z  k is a finite set of multi-indices n = ( n  L ..... nk) and nco= 
ntco~ + .-- +nkog~. Define 

A~(tl ..... t~)= ~ a,,~exp(int) 
n E  M 

with t=(tL,..., tk) and nt=n~t ,  + ... +nkt~. Then 

P~(R) = A~(wl R ..... cokR) 

hence 

1 fc~r 
(c2 --c,) rJ~,r g(P.(R + ws(R)), P.(R))  dR 

1 f,-2r 
(cz - c,) T J,., r g(A~(w L(R + ws(R)) ..... wk(R + ws(R))), 

A~(wL R ..... wkR))  dR 

(2.17) 

(2.18) 
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We will use the following general formula: If f (R) is a bounded continuous 
function on [0, oo), then for U, T - -*~  with U/T-*O, 

1 [,'2T 
(C2--Cl)TJc, T f i R )  dR 

1 fc:T i f .+ .  
- ( c 2 - c , ) T G ,  r -U JR f ( Q ) d Q d R + O ( U / T )  (2.19) 

Indeed, the integral on the RHS is equal to 

1 ff f ( Q  ) dQ dR ( c z - c , )  TU {,.,r<.R~,.2r.o<.Q-R<~uI 

_ 1 f f  f ( Q ) d Q d R + O ( U / T )  
( c 2 -  c,) TU {c,T~Q~c2T.O<~Q-R<~U} 

' y 
- (c2-c,)r I~,r~e-<c, rl f (Q)  dQ + O(W/r) 

which coincides with the LHS up to O(U/T). Equation (2.19) implies that 

1 t c2r 
(c2 - cl) T ,., r g(P,(R + ws(R)), P~.(R)) dR 

1 fc2T 1 fR+.  
--(c2--c~)TJ,. ,r-UJR g (P~ ' (Q+ws(Q) ) 'P ' (Q) )dQdR+O(U/T)  

(2.20) 
From (1.18), 

[ws(R) - ws(Q)l <<. C I R -  QI S T  -2 <~ CUST -2 (2.21) 

when S T -  Z ~ 1, R <~ Q <. R + U, 0 <~ U <~ T, and 1 ,~ c l T <~ R <~ c2 T, hence 

1 l -~2T 1 ~R+u 
( c2 -c , )TJc ,  T-UJR g(P~(Q+ws(Q)) 'P~(Q))dQdR 

1 U 1 {"+" 
= ( c 2 _ c t ) T j , . , r - ~  R g ( P ~ ( Q + w s ( R ) ) , P ~ ( Q ) ) d Q d R + O ( S T - 2 )  

(2.22) 

Using the ergodic theorem (see, e.g., ref. 16), we have that for every 6 > O, 
there is an Uo(6 ) such that 

1 fR+u 
-U JR g(A~(wJ(Q+ws(R))  ..... w k ( Q + w s ( R ) ) ) ' A ' ( w l Q  ..... ~ 

-f~-k g(A~(tl +Wlws(R)  ..... G +Wkws(R)),  A.(tl  ..... G)) dt <6/2 

(2.23) 
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when U >  Uo(6). When this is combined with (2.18)-(2.22), it yields 

t l ~,r r l f,'2r 
g(P,(R +ws(R)}, P~.(R)) d R - a r  d t ( c 2 _ c t ) T J ~ r  dR 

x g(A~(tl + o91 ws(R),..., tk + ogkws(R)), A~.(ti ..... tk)) < 6 (2.24) 

whenever T and S -  ~/2T are sufficiently large. 
We will prove now that 

lim 1 [,.zr 
s /r-  ~.s/r 2 ~o (C 2 -- cl) T J~.~T g(AJt  + ws(R)co ), A,(t)) dR 

= Irk g(AJs), Ar ds (2.25) 

where t=( t l  ..... tk), s=(s l  ..... sk), and o J = ( o l  ..... ok). Moreover,  the 
convergence in (2.25)is uniform in t ~ T  k. 

Define y = ws(R ). From (1.18), 

S 
y = ~ ( 1  +O(S/T2)) 

dR S ~y= -~y2 (1 + O(S/T2)) 

when R>~c1T>> S 1/2, so 

(cz-- l) , g(A~(t+ws(R)aO'A~(t))dR 

1 f .'L(,, T) dR 
= (c2 - c,) TJ,.L(,.2T) g(A~(t + yw), A~.(t)) --dry dy 

1 f (2cl Tl-t S ~yS 2 
--(c2_cl)Tj(2,.2T)_, s g(A,(t+yog),A,(t)) d y + O ( S / T  2) 

Define r = S I T  and 

with 

XIX2 
~o(X) x2(x2- xl) 

xt = (2c2) -1, x2 = ( 2 c t ) - '  

Bleher and Lebowitz 

(2.26) 
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Then ~:~:2, ~Oo(X) dx = 1 and 

1 f(2ct T) -1S $9 
(c2 -- cl) T J~2c2T)-~ S g(A~(t + y02), A~(t)) ~ dy 

?: 1 g(A~(t +yco), A~(t)) r dy 
T .,q 

uniformly in t e T k, By the ergodic theorem 
when r --* oo, to 

the last integral converges 

fT* g(A~(s), A~(t)) ds 

which implies (2.25). 

Let 

It now follows from (2.24), (2.25) that 

lim 1 ~,.2r 
s/r~ ~o,s/r2-o (c2 - cl) T Jc, r g(P,(R + ws(R)), P~(R)) dR 

= fv, fv, g(A,(s), A,(t)) ds dt (2.27) 

l" 

v,(B) = Jl,: A,(,I~ sl dt 

be the distribution of A,(t). Then we can rewrite (2.27) as 

lim 1 f c2r 
s/r . . . .  s/r2~o (c2 -- cl) T J,., r g(P~(R + ws(R)), Pc(R)) dR 

FS = g(xl ,  x2) v,(dxl) v,(dx2) (2.28) 

By the ergodic theorem, 

1 fc2 r [ .  I" oo :im g(P,(R)) dR= --JT* g(A~(')) d t= J-oo g(x) v~(dx) (C2 fC l )  T 0cir 
(2.29) 

for every g(x)e  C~(RI) .  By Theorem C, 

: -;L :i~mo~ (c2--c,)TOc, r g ( F ( R ) ) d R -  g(x) v(dx) 
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and by (2.11), 

1 f c 2 T  

(c2--c~)TJ~r  Ig(F(R) ) d R - g ( e , ( R ) )  dR[ <<. Co~ 

so 

F lira g(x) v~(dx)= g(x) v(dx) (2.30) 

Now (2.28) together with (2.15), (2.30) implies 

1 ~,.r 
lim g(F(R + ws(R)), F(R) ) dR 

s/v~oo.s/r2~o(cz--cl)T ~r 

= g(xl ,  x2) v(dxl) v(dx2) 
- o~ -r  

Hence (2.13) is proved in the particular case when g(x~, x,_)e C~(R 2) and 
~o(c) - 1. 

By implication (2.13) holds in the case when g(x~, x2)~ C~ and ~o(c) 
is a stepwise function with a finite number of steps. Now every 
r is a limit in L~-normof  stepwise functions; hence, 
again by implication, (2.13) holds in the case when g(x~, x 2) e C~(R  2) and 
qg(c)e L~ c2-1). 

Assume now that g(xl ,  x2) is a continuous function with compact 
support. For every e > 0  there exists g~(x~, x2)~ C~(R 2) such that 

sup [g~(x I , x 2 ) - g ( x l ,  x2){ < e 
x I , X 2  

Hence 

1 fe,.r (c2 --c~) T c,r Ig,(F(R + ws(R)), F(R)) - g ( F ( R  + Ws(R)), F(R))I dR < 

Thus it follows that (2.8) holds for every continuous function g(x~, x2) 
with compact support. 

The condition F(R)~ B 2 implies that 

lim lim sup 1 f:zr IF(R)I 2 X II~lnll ~> ~/(R) dR = 0 
~ - ~  r-o~ (c2--Cl)TJc, r 

Let ~b(y) e C~ ~) and 

f = ~  if lYI>2A 
~O(y) l ~  [ if lYl < A 

0, 1 ] otherwise 
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Assume that g(x), x = (x, ,  x2), is a continuous function such that g(x)= 
O([x[ 2) as Ix] --* ~ .  Then 

lim lim sup 1 r j,.,. r A--~ r--o~ (c2- -c l )T  ,.,r g(F(R+ws(R)) ,F(R))  

x [1 - ~(IF(R)I + IF(R) + ws(R))l )] dR 

l fc2T 
Co Alim [IF(R)[ 2 Z{ir(a)l ~>A}(R) 

(C2--cl)T,, . ,r  

+ [F(R + ws(R ))12 X {IF~R + ,,.sIR,t/> A I(R)]  dR = 0 

Hence, by implication, (2.13) holds for every continuous function g(x, ,  x.,) 
with g(x) = O(Ixl 2) as Ixl --' ~ .  Theorem 2.1 is proved. 

Assume F ( R ) e B  2. Denote by v(dx~, dx2; z) a distribution of the pair 
(F(R + z), F(R)), i.e., for every continuous function g(x~, x2) on R 2, 

lim g ( F ( R + z ) , F ( R ) ) d R =  g(xl,x2)v(dxl,dX2;Z) 
T ~ ,~ zc, - 

T h e o r e m  2.2. Under  the same assumptions as in Theorem 2.1, 

1 f,.2 T lim - g(F(R + ws(R)), F(R) ) q~(R/r) dR 
r . . . .  .s/r~-_ ( c 2 - c t ) T  ,'iT 

; ~ f ~  1 ; , 2  = g(x l ,x2)  - dc~o(c)v(dxl,dx2;z/(2c)) 
- - : 0  --~:~ C'~ - -  C I  r 

(2.31) 

and 

),!m lim 1 [r~ '+z"~g(F(R+ws(R)) ,F(R))d  R 
0 T - - , ~ . S / T ~ :  TACIT 

= g(xl ,  x2) v(dxl, dx2; z/2) (2.32) 
- ~:_, - oc, 

ProoL The proof  goes along the same lines as the proof  of 
Theorem 2.1. Moreover,  in the derivation of the estimate (2.24) we used 
only that T ~  oo and S/T2-+O (and not that S / T ~  oo), so we can apply 
(2.24) also in the present proof. Assume that g(x, ,  x2) e C~'(R2). Since 

ws(R) ~ S/(2R) = z/(2c) 
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with z = S/T, c = R/T, (2.24) implies 

1 ~c2r 
lira g(P~(R + ws(R)), P,(R)) dR 

r ~  ( c , _ - c l ) T J c ,  r 

= f  dt l f f  dcg(AAt+coz/(2c)),A~(t)) 
k C 2 - -  CI n 

l L L  
= dc g(xl, x2) v,(dxl, dx2; z/(2c)) 

C 2 - - C l  "1 - - - 

where v,(dxl dx2; z) is a joint distribution of A,(t +coz) and A,(t). Letting 
e ~ 0 ,  we come to (2.31). 

Since S_~o~ S~oo g(x~, x2) v(dxl, dx2; z) depends continuously on z, 
(2.32) is a consequence of (2.31). Theorem 2.2 is proved. 

We shall also use the following general result: 

T h e o r e m  2.3. Assume F(R) e B z. Let v(dx~ dx2; z) be a probability 
distribution of the pair (F(R), F(R+z)), and v(dx) be a probability 
distribution of F(R). Then for every continuous function g(xl, x2) which is 
O(Ix,I z + Ix2l z) at infinity, 

I~(z; F)= g(xl, x2) v(dxt dx2; z) (2.33) 

is a continuous almost periodic function in z, and 

i ~ 

Proof. We have 

Ig(z; F) = lira 1 ( r  g(F(R), F(R + z)) dR 
r - -~  TJo 

Assume g(x)e C~(R 2) and P~(x) is a trigonometric polynomial satisfying 

LI P ~ ( R )  - F(R)II n2 < 

Then 

Now, 

IIg(z; F) - Ig(z; P~)] ~< C(g)e (2.35) 

P~(R) = A~(o t R ..... cokR) 
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where A~ is a function on T k and o91 ..... e) k are incommensurate .  It implies 
that 

Ig(2; e~.) = fr~ g(A,( t) ,  A,( t  + zo))) dt (2.36) 

Let M =  sup,~Tk IA,(t)l. Consider a polynomial  p,(x~, x2) such that 

sup Ip,(xI ,  x 2 ) - g ( x l ,  x2)l ~< e 
Ixd,lx21 ~< M 

Then 

I/p,(z; P~.) - Is(z; P~)l ~ (2.37) 

Since Ip~(Z; P~) is a t r igonometric polynomial  in z, estimates (2.35), (2.37) 
prove that  if g ( x ) ~ C ~ ( R 2 ) ,  then Ig(z;F) is an almost  periodic function 
in z. 

By implication it holds also for every continuous g(x)  which grows at 
infinity as O(Ixl)2. 

From (2.36) and the ergodic theorem, 

:irn l ~ : I g ( Z ; P ~ ) d z = I r k I T k g ( A ~ ( t ) , A ~ ( s ' )  d tds  

= g ( x l ,  x,_) v~(dx~) v~(dx2) 
oO oO 

Letting e ~ 0 ,  we obtain, with the help of (2.30), the formula (2.34). 
Theorem 2.3 is proved. 

. PROOF OF T H E O R E M S  1.1 A N D  1.2 

Proof of Theorem 1.1. We have 

AN(R,  S; ct) = z lN(R + Ws(R); ct) - AN(R;  or) 

= [R + ws(R)]  1/2 F(R + ws(R);  ct) - RI/ZF(R; ct) 

= RI/Z[F(R + ws(R);  or) - F(R; o~) 

+ O(SR-3 /ZIF(R+ ws(R); ct)[) 

since by (1.18), 

w = ws(R  ) ~ S/(2R),  [R + ws(R)]  I/2 _ RI/z ~ S/(4R3/2) 

(3.1) 
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Due to the triangle inequality, (3.1) implies 

(c,_ - c,) T dc, r IAN(R, S; ~)12 (p(R/T) dR 

( 1  ~,~ ),,2 
- (c2 -- c~) TL., r [F(R + ws(R); ~) - F(R; ~)12 R~o(R/T) dR 

( ( ,  r~ , ),,2) 
+ 0  ( c 2 - c t ) T J c ~ r  (SR-3/2)2 [ F ( R + w s ( R ) ; e ) l - d R  

( ,  ~:,~ ),,2 
-- (c_, - cj ) T -,'r ]F(R + ws(R); cr - F(R; c012 Rq~(R/T) dR 

+ O ( S T  -3/2) 

since 

1 ~ f : r l F ( R + w s ( R ) ; ~ ) 1 2 d  R 
( c , - - c ~ ) T  ,r  

1 f,.2r+,,.s, c2r, ]F(R'; c~)] 2 dR 
(c2 -- ct) T ,-~ T+ ,,'s.'l rJ - ' ~  dR' = O( 1 ) 

where R' = R + ws(R). Hence 

lim (T_~ 1 ~c2r )1/2 
r . . . .  S/T2~O (C.--cl)TJ,.~T ]AN(R 'S ;7 ) [2qg (R /T )dR  

lim ( T -  ~ 1 
r - ~ . s / r ' - - o  \ ( c 2 - c t ) T  

~c2T 
x ~c,r ]F(R+ws(R);~)-F(R;~)I2R~~ l/" 

or equivalently, 

lim T -  1 I fc: r 
r+oo.s/r 2-o ( c 2 - - c l ) T  ,.,r IAN(R 'S ;e ) [2  q ) (R /T)dR 

1 
= lim T -1 

r - ~ , s / r 2 ~ o  ( c 2 - c l ) T  

c2 T 

x ] F ( R + w s ( R ) ; 7  ) F (R;~) I2R~p(R/T)dR  
SclT 

(3.2) 
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By Theorem 2.1, 

lim T -  l 1 ~,-, T 
s/r--o~.s/r2~o (c2--cl)TJ~,'r IF (R+ws(R) ;e ) -F(R;e ) I2  Rtp(R/T)dR 

1 
= J,0 lim 

s/r~ ~.S/T'-~0 (C2 -- Cl) T 

f 
c2T 

x IF(R+ws(R);e) -F(R;e) I2~oo(R/T)dR 
t i t  

S f = J~o (x I - x2) 2 v~(d.x'l ) v , (dx , )  = J,p W(e) 
-- oc - ,:~2 

where q)o = J ~ l cq~( c ), 

f f ' 2  J ~ - ( c , _ - c l )  ., crp(c)dc 

and 

W(ct) = 2 f~- x2v,(dx) 

Thus 

lim T -  I 1 f,',T s/r~_.s/r2--o (c2--c,)TJ,.,'r IAN(R'S;ct)I2 dR=J~W(~ 

Now Theorem C, the Fourier  expansion (1.42), and the Parseval identity 
(2.9) lead to 

x2G(dx )=( l /2 )x  -2 lu~(k)l-' (3.3) 
-o :_  k = l  

Hence 

W(~t)=~ -2 ~ lu=(k)l 2 
k = l  

Theorem 1.I is proved. 

Proof of Theorem 1.2. From an analog of (3.2) where ( S / T ) ~ -  
instead of (S/T") --* 0 and Theorem 2.2, 



196 Bleher and Lebowitz 

lim 
T ~  co, S / T ~  : 

T -  1 I ~c2  T 
(c 2 - c , )  T ,',r IAN(R, S; c~)l 2 qg(R/T) dR 

- l i m  T -  ' 1 e / , 2  
T 

- . [F(R + ws(R); ~) -- F(R; ~)12 Rqg(R/T) dR 
T ~ o c , S / T ~ z  (C2--cl)T.,.tT 

= Ix, _x212 _ _ 1  c2 . . . . . .  (c2-- cl) -, dc cop(c) v(dx, ,  dx2; z/(2c)) 

re2 
_ 1 cqJ(c) W ( z / c ;  ~) dc 

( c = -  c , )  ., 

with 

f~f~ W ( z ;  o~) = Ix ,  - :,c21 ~- v ( d x , ,  d x 2 ;  z/2) 
o~ - ct2 

= lim IF(R+z /2 ;~x ) -F(R;o t )12dR  

Now, from (1.42), 

F( R + z/2; ~x ) - F( R; cx ) 

l 0 k 37r-1 

= - 2 n - '  ~ u , (k)s in( -~  -~) 
k = '  

x sin I2rr (R +4)Yk+O~,(k)-3---~] 

so, by the Parseval identity (2.9), 

lim 1s  r 
r - ~  T o [F(R + z / 2 ; c O - F ( R ; ~ ) I 2  dR 

=27t-2 ~ lu=(k,12 sin2 ( - ~ )  
k = l  

--Tr -2 ~ lu=(k)l 2 [I -cos(rtzYk)] 
k ~ '  

(3.4) 
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and so 

~, lu=(k)l 2 [1--COSOzzYk)] 
k = l  

for m r  hence (1.33) reduces to 

W(z;~)=,~ ~ Z 
neZ:\{0} 

= 2 ~  - 2  

so that 

z-LW(z;  cO=~ -~ 

In1-3 p(n){ 1 - cos[l tY(n)z]  } 

In1-3 p(n) s in2[ny(n)z/2] 
neZZ\{O} 

(4.1) 

IrEnz/2i - 3 p(nnz/2 ) sin2[ Y(nnz/2 ) ](rtz/2 ) 2 
nEZ2\{O} 

SO 

Here we used the fact that p ( 2 ~ ) = p ( l )  and Y ( 2 l ) = 2 Y ( l )  for every 2 > 0 ,  
and we reduced z -~ W(z; ~) to an approximat ing  sum to the integral 

~-1  I l l - 3  p(~) sin-' Y(l) d l  

In the Appendix we show that 

~ - '  I l l - 3  p(r sin 2 y(~) dl  = 1 (4.2) 

lim z - I W ( z ; ~ ) =  1 
z ~ 0  

which was stated. 
Assume now that  ), e Fo(H). For  the sake of simplicity we will consider 

H =  {Id, g~ }, where g~: (Xl, x 2 ) ~  (xt ,  - x 2 ) .  The general case is treated in 
the same way. In the case under consideration 

21 if ct 2is half-integer 
m~(H) = if ct 2 is not half-integer 

W(z; c t ) = n  -2 

Theorem 1.2 is proved. 

4. PROOF OF T H E O R E M S  1.3, 1.4 

Proof of Theorem 1.3. Assume first that ? e Fo. Then Y(m)~ Y(n) 
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so we have to show that 

limz-~W(z;~)={21 
~ 0  

if ~_ is half-integer 

if ~2is not half-integer 

Define 

P= {(nl,n2)~Z2:n~=O} 

so that P consists of fixed points o rgy .  F rom (1.26), if Y(n)=  Yk, then 

J2 Icos(n_~2)l-In[ -3/z [p(n)] I/z if nCP 
lu~(k)l =11n1_~/2 [p(n)]l/2 if n e P  

so (1.33) reduces to 

W(z; ct)= 41t -2 ~ cos2(2nn2ct2) In1-3 p(n) sin2[rcY(n)z/2] 
n ~ P  

+ 2rt -2 ~ 1'll-3 p(n) sin2[rcY(n)z/2] 
nEP\{O} 

= 4n -2 ~ cos2(2rtn_,ct2) In(-3 p(n) sinZ[rcY(n)z] 
n~ Z2\{0} 

--27Z-2 Z In]-3 p(n) sinZ[nY(n)z/2] 
n E P '  {0} 

= Wo(z; ~) - Wl(z; c~) (4.3) 

with 

Wo(z; ~) = 4n -2 
nEZ2\{O} 

Wl(Z; 0~) = 27z-2 2 
nlez\{o} 

cos2(2nn2ct_,) In1-3 p(n) sin2[rtY(n)z/2] (4.4) 

[n1-3 p(n) sin2[ny(n)z/2], n = (nl,  0) (4.5) 

Assume first that ~2 = 0 or I/2. Then 

Wo(z; ~ )=4z t  -2 ~ In1-3 p(n) sin2[rtY(n)z/2] 
nEZ2\{0} 

which is twice the sum in (4.1), so the same computa t ion  as before leads 
to 

lim z -z Wo(z; ct) -- 2 (4.6) 
~ 0  
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Now, 

and 

hence 

z - I  

n l = l  

n l  3 sin2er[ Y(nl, O)z] ~< Cz 2 
z - I  

~. nFl <~ Co zz Ilogzl 
tl t = I 

From (4.3)-(4.7), 

which was stated. 

n ~  3 sin2[nY(nl, 0)z]  <~ ~" nF 3 <<, ClZ 2 
n l  ~ z- - - I  . - - - I  

0 <~ Wl(z; c~) <~ Cz 2 Ilog zl 

lim z -1W(z; ~) = 2 
z ~ O  

Consider now the case when ~2 is not half-integer. Substituting 

cos2(2rrn2~2) = [1 + cos(4rrn2~2)]/2 

into (4.4), we obtain that 

Wo(z; ~) = W2(z; ~) + W3(z; ~) 

with 

and 

W2(z; ~) =2n  -2 ~ Inl-3p(n) sin2[ny(n)t/2] 
n E Z 2 \ { O }  

W3(z;cr = 2n -2 ~ cos(4rrn2~2) In1-3 p(n) sin2[n Y(n)z/2] 
nE Z2\{O} 

Since W2(z; cr coincides with W(z; or) in (4.1), we obtain that 

Let us prove that 

lim z- lWz(z;  ~)=  1 
z ~ O  

lim z - i  W3(z; a) = 0 
z ~ O  

(4.7) 

(4.8) 

(4.9) 

822,,74/I-2-14 
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The idea is to apply the Abel summation formula to (4.9). Let us fix n I = j  
and denote 

a(k) = cos(4nkct2) 

and 

bj(k) = In1-3 p(n) sin2[TtY(n)z/2], n = ( j , k )  

We have 

a(k) bj(k)= 
k =  - o o  k =  - o o  

A(k)[bj(k) - b;(k + 1 )] 

with 

a ( 1 ) +  - - . + a ( k ) ,  k>~l 

= l 0, 
A(k) k = O  

- a ( k +  l) . . . . .  a(O), k~< - l  

Since ~2 is not half-integer, 

i i~(k) c0s(4~i~2) IA(k)l = 
i = ~o(k) 

is uniformly bounded in k. In addition, 

Ibj(k) - bj(k + 1)l ~< C{ In1-4 sin2[Tt Y(n)z/2 ] + In1-3 z Isin[rt Y(n)z/2 ]l } 

SO 

I W3(z; ~)l ~< Co 
n~Z2\{O} 

Let us show that 

{In1-4 sin2[rt y(n )z/2 ] + In1- 3 z Isin[rt Y(n )z/2 ]l } 

(4.10) 

In1-4 sin2[ rt Y(n )z/2 ] << Cz 2 [log zl 
n ~ Z 2 \ { o }  

In1- 3 z Isin[zt Y(n)z/2 ]l <~ Cz 2 Ilog zl 
n~Z2\{O} 

(4.11) 

We have 

Y', In1-4 sin2[rtY(n)z/2] <~ if, C In1-2 z z ~ C1 z 2 Ilog zl 
0~< Inl <~ l / z  0~< Inl ~< IIz 
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and 

Inl-4 sinZ[~Y(n)z/2] <~ ~ Inl-4 <~ C,z 2 
Inl >~ l/z Inl >/l/z 

which proves the first part of (4.11). The second part is established in the 
same way. 

From (4.10), (4.11), 

W3(z;ct)=O(z 2 Iiog z]), z ---, 0 

which proves (4.9). F rom (4.9), 

lim z-lW(z; ot)= 1 
z ~ 0  

which was stated. Theorem 1.3 is proved. 

Proofer Theorem 7.4. When ~, is the circle {Ixl=~t  -~/2} of area 1, 
then Y(n)=n -m[n[, p(n)=n -m, and (1.33) reduces to 

W(z;~)=2rt -5/2 ~ [G(k)12 k-3/2sin2(rtl/Zkl/2z/2) (4.12) 
k = l  

with 

Define 

G(k) = ~ e(n~) 
,, ~ z2:  ,,~ + ,,~ = k 

~,(~) = ~ -3/2 sin2(r A = nz2/4 

Then (4.12) is equivalent to 

z-lW(z; cO=~ -2 ~" Ir~(k)l 2 ql(kd)zl 
k = l  

We shall use the following result from ref. 9. 

T h e o r e m  D. For  all rational c(~Q2, 

N 

lira ( N l o g N ) - I  ~ IG(k)[2=C(ot)>O 
N ~ o o  k : l  

For all Diophantine c(, 

N 

lim N - l  ~ Ir,(k)12=Tt 
N ~ c ~  k = l  

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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Remark. Actually in ref. 9 an explicit formula was derived for C(~). 
For ct = 0 it gives C(0)= 3. 

Consider 

I(a,a+e;A)= ~ ]r~(k)12~k(kA)A, O < A ~ e ~ a  
k :a~<kA<a+tz  

Let us replace ~b(kA) by ~b(a) in the RHS of the last formula and estimate 
the error coming from this replacement: 

II(a, a + e; .4) - ~k(a) S(a, a + e; A )[ <<. Ce~o(a) S(a, a + e; A) (4.17) 

where 

and 

S(a,a+e;A)= ~ Ir~(k)[2A 
k:a<<.k,d<o+~ 

~o(r = ~-3/2 

Assume a e Q  2. Then from (4.15), 

S(a, a + e; A) = C(~) { (a + e) log [(a + e)/A ] - a log(a/A)} + o(llog A I) 

=C(ct)el logAl+o(l logAI) ,  A ~ O  (4.18) 

(4.17) and (4.18) imply 

I I (a ,a+e;A)-C(ct ) l  logd  Iff(a)el -..<CllogAI ffo(a)e 2, A-..<Ao(e) (4.19) 

Summing up this estimate for N adjacent intervals [a+ j e, a +  ( j +  1)e], 
j = 0 ..... N -  1, we obtain that 

i N-, 
I (a ,b;A)-C(~t ) l logAI  ~ ~ ( a +  j~)~ 

j = 0  

N - - I  

~<CllogAI ~ ~bo(a+je)e 2, b = a + N e  
j = 0  

which implies 

A ) -  C(~) IlogAI O(t)dt <~Co IlogAI e, 

It remains to estimate I(0, a; A) and I(b, oo; A). 

Co= Co(a) (4.20) 
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Assume a < 1. Then ~(~) is a decreasing function on (0, a); hence 

I(a/2, a; A) <~ ~b(a/2) S(a/2, a; A) 

Now 

SO 

S(a/2, a; A ) <~ S(O, a; A ) = 
k : k A < a  

[r~(k)[ 2 A ~ Ca log(a/A) <~ Ca Ilog A[ 

Replacing a by a2 -j, we obtain that 

I (a2-J- l ,  a2-J;A)<~Co IlogAI ~b(a2-J-l)a2 - j - l ,  j = 0 ,  1 ..... J (4.21) 

where 

J = m i n { j :  a2 -j~<A} 

Summing up (4.21) in j = 0, 1,..., J, we obtain that 

l(O,a;A)<<.C~ ]log A[ ~k(r de (4.22) 

Assume b > 1. Then along the same way we obtain that 

l(b, 2b;A)<~CollogA[ ~b~(b)b, ~b,(~)=~-~/2(l+~ -~) 

and then that 

f; I(b, oo;A)~< C, Ilog A] 0,(~) d~ (4.23) 

Choosing a ~ 1 and b ~> 1, and then e ~ min{a, Co L(a)}, where Co(a) is the 
constant in (4.20), we obtain from (4.20), (4.22), and (4.23) that 

2 I(0, oo; A)= C(~) Ilog AI 0(~) d~ + o(liog AI), , t-- ,0 (4.24) 

By (4.14), z-~W(z;~)=rc-2I(O, oo; A). In addition, 

;o fo fO @(~) d~ = ~-3/2sin2~U2d~=2 r/-2 sin2 t/dr/= 7r 

I(a/2, a; A) <. Co Ilog AI ~b(a/2)(a/2) 
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Therefore 

z - l W ( z ; ~ ) = C ( ~ ) ~  -~ Ilog AI + o(llog AI) 

or, since A = nz2/4, 

z-~W(z; co) = 2C(~) re-* Ilog zl + o(llog zl) 

Hence 

lim (z Ilog z l ) - l  W(z; ~) = 2C(~) r t -  ' 
z ~ 0  

Thus the first par t  of Theorem 1.4 is proved. 
Assume now that  ~ is Diophantine.  Then by (4.16), 

S(a ,a+e;A)=ne+o(1 ) ,  A--*O 

Hence (4.17) implies that  

II(a,a+e;d)-nel<<.CqJo(a)e z, d<~do(e) 

Now, along the same way as we derived (4.24) for rational ~, we arrive at 

f: I(0, oo; A) = 7z O(~)d~+o(1)=g2+o(1) ,  A--+O 

This implies 

z- tW(z;~)=n-EI(O,  oo ;A)=l+o(1 ) ,  z-*O 

which proves Theorem 1.4 for Diophant ine  ~. 

5. PROOF OF T H E O R E M S  1.5-1.7 

Proof of Theorem 1.5. By (3.1) 

F(R, S; ~) = F(R + ws(R); ~) - F(R; ~) + O(SR-2 IF(R + ws(R); ~)l) 

Hence assuming g(x)~ C ~ ( R I ) ,  we obtain that  

1 f,'2T 
(c2 -- cl) T J~, r g(F(R, S; ct)) ~o(R/T) dR 

1 fc2r 
- (c2 -- c~) T JolT g(F(R + Ws(R); ~) -- F(R; ~)) qo(R/T) dR + O(ST -2) 

(sA) 
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By Theorem 2.1, 

lim 1 (c2r g(F(R + ws(R);  o~)- F(R; o~)) q~(R/T) dR 
S / T ~  o o . S / T  2 ~ 0 (C 2 - -  s ) T -,.~ T 

S = g(x~-x ,_ )  v~(dx~) v,(dx2) = g(x)  ~o,(dx) 

Hence 

lim 1 fc2r = f : ~  s / r ~ . s / r 2 ~ o ( c 2 - c l ) T , c , r  g ( F ( R , S ; ~ ) ) q ~ ( R / T ) d R  g ( x ) ~ ( d x )  

By implication this equation holds for every continuous bounded function 
g(x). Theorem 1.5 is proved. 

Proof  o f  Theorem 1.6. From (5.1) and Theorem 2.2 we obtain that 

iim 1 fc2r 
r~  ~o,s/r~ : (C2 -- Cl) T . ~  r g(F(R, S; ~)) qg(R/T) dR 

f ~ f  oo _ _ 1 ; [  . = -oo . -oo g(xl  --x,_) (c2-- cl) , dc ~o(c) v~,(dx t dx2, z/(2c)) 

where v,,(dx~, dx,_; z) is a joint distribution of F(R; o~) and F ( R + z ;  o~). Let 
la~,(dx; z) be a probability distribution of a difference r  ~z of two random 
variables, whose joint distribution coincides with v~,(dx~ dx2; z/2). Then 

g(xt  - x 2 )  v~,(dxl dxz; z/2) = g(x)  p,,(dx; z) (5.2) 
- o o  - - o o  - - o o  

Hence 

lim 1 f~2r 
T~oo.s/r--.~ (C2--cl) To,.,T g(F(R, S; o~)) qg(R/T) dR 

(c2 - cl) q~(c) -oo g(x)  I.t~,(dx; z/c) 

Theorem 1.6 is proved. 

Proof of Theorem 1.7. Almost periodicity of 

~o~ g(x)  i~(dx; z) 
d ~  oo 
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follows from Eq. (5.2) and the first part of Theorem 2.3. The value of 

l i m l [  r ~ dz g(x) II,(dx; z) 
r - - o e  TJo -m 

follows from (5.2) and the second part of Theorem 2.3. Theorem 1.7 is 
proved. 

6. P R O O F  OF T H E O R E M S  1.8, 1.9 

Proof of Theorem 1.8. For the sake of simplicity we will assume 
yeF~ .  The case yeF~(H)  is treated similarly. By (5.2), #=(dx;z) is a 
distribution of the almost periodic function F(R + z/2; ~) - F(R; ~). From 
(1.41), 

F(R + z/2; ~) - F(R; ~) 

= - 2 ~ - 1  ~- e(ncO In[ -3/2 [p(n)]  1/2 sin[nzY(n)/2] 
n~Z2\{O} 

x sinl-2rt(R + z/4) Y(n) - 3rt/4] (6.1) 

Define for every n ~ M, 

f ,(s; z, ~)=  - 2 x  -1 ~. e(kn~) 1kn[-3/2 [p(n)]l/2 sin[rtzr(kn)/2] 
k = l  

x sinE2nks + n z Y ( k n ) / 2 -  3rt/4] (6.2) 

which is a periodic function in s of period 1. Then (6.1) can be rewritten 
as  

F(R + z / 2 ; c t ) - F ( R ; ~ ) =  ~ f , (Y (n )R ; z ,  ct) 
n ~ M  

By our assumption, the numbers Y(n), n eM ,  are linearly independent 
over Q, so by Lemmas 4.4 and 2.5 in ref. 7, I~=(dt; z), the distribution of 
F(R + z/2; ~t)-  F(R; ct), coincides with the distribution of the random series 

~= = ~ f . ( t , , ;  z, or) (6.3) 
n ~ M  

where t,  are independent random variables, uniformly distributed on 
[0, 1 ]. Since ~, ~ FI c Fo, all the numbers { Y(n), n ~ M} are different. Let 
us order the numbers { Y(n), n ~ M} in the increasing order, i.e., Y(n(1 ) )<  
Y(n(2)) < .... Denote 

ak(s; Z, Cr = f,~k)(S; Z, C~), ak(S) = ak(s; z, ~) (6.4) 
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According to Theorem 3.1 in ref. 7, Theorem 1.8 will 
lower bound (1.39), if we prove that 

sup lak(s)[ <Jk -3/4, J > 0  
0 ~ < s ~ < l  

(6.5) 

;~ aj(s) 2 ds> Jo k-'/2, J o > 0  
j = k  

Since Y(~) is a positive homogeneous function of second order, 

Co kl/2 <~ In(k)l <~ C1 k t/2, Co, Ci > 0 (6.5') 

Hence (6.5) is equivalent to the following two estimates: 

sup [f,(s;z, ct)l<J I [/ll -3/2, J l > 0  (6.6) 
O ~ < s ~ < l  

1 

fo [f,(s;z'ct)]2ds>J2 r-l, J 2 > 0  (6.7) 
n ~ g :  Inl > r  

The first estimate follows from (6.2): 

If,,(s;z,~)l <~ C ~ [k//I - 3/2 <... Co [nl s/2 
k = l  

Let us prove (6.7). Equation (6.2) is a Fourier series in s, so 

z, ~0 [f,(s;  ~)]2 ds = 2r~ -2 Ikn1-3 p(n) sin2[~zY(kn)/2] 
k = l  

/> C Inl-s sin2[nzy(n)/2] (6.8) 
and 

~. [f,(s; z, ct)] 2 ds >~ C ~ In1-3 sinZDzzy(n)/2] (6.9) 
n e  M : l n [  > r  n ~  M :  Inl > r 

Note that the density of M in the plane is 6/~ 2, i.e., 

lim (~r2) -1 ~ 1=6/~ 2 
r ~  o~ n e  M :  Inl < r 

follow, except the 

so (6.7) will follow from (6.9) if we show that Ve>0, 3 6 > 0  such that the 
upper density of the set Qa= {neZ2:sin2[nzY(n)/2] <<.62} is less than e. 
Indeed, then, for !arge r, 

[f,,(s;z,o:)]2 ds>~C ~ Inl-3 t52 
n ~ M : l n l >  r 0 n ~ M \ Q , ~ : l n l > r  

>~C[(6/rc2)-2e]O ~ ~ [nl-S>/Co r-1 
n 6  Z2:  Inl > r 
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which gives (6.7). Let sin &o = &- Consider the annuli 

A~(I) = { x e  R2:InzY(x) /2  -- 11 < 60} 

and define Qa(I)=Z2nAa(I). Then Q~=U~=~ Qa(I). Let N a ( l ) =  IQa(l)l- 
Due to the 2/3-estimate of Sierpinski (see, e.g., ref. 27 or ref. 15) 

INa(l) - Area Aa(l)l <~ CI 2/3 

In addition, Area As(l) <<, Co6l, hence Na(l) <~ Co61+ CI z/3 and 

L 

Na(1) <~ Co6L 2 + CL 5/3 
/ = 1  

Therefore the upper  density d(Q6) of Q6 is estimated as 

L 

d(Q~)~<lim sup CtL -2 ~ Na(I)<~ C26 (6.10) 
L ~ o o  / = 1  

This proves the desired estimate of d(Qa), and so Theorem 1.8 is proved, 
except (1.39). To  prove (1.39), we use the following theorem. 

T h e o r e m  6.1.  Assume ak(S), k = 1, 2 ..... are cont inuous functions of 
period I, with ~ ak(S) ds = 0 and 

sup sup lak(S)l < ~ ,  lak(s)12ds<~ 
k 0 ~ < s ~ < l  k = l  

Assume also that  3ko and 6 o > 0 such that  Vk > ko, 3Gk c { 1, 2 ..... k such 
that IGkl >6ok and VleGk,  

C'l-~'> sup lal(s)l~> la~(s)le ds >~C"l-' (6.11) 
0 ~ < s ~ < l  

with some C', C" > 0 and 0 < 7 < 1. 
Then Ve > 0, 3C~, )., > 0 such that  Vx >/0, 

Pr ak(tk)>X >C~exp(--2,x ~l§ (6.12) 
k 1 

Pr a k ( t k ) < - - x  >C~exp(--2,x II+~v~l-a~) (6.13) 
k ! 

assuming that tk, k/> 1, are independent uniformly distributed random 
variables on the interval [0, 1 ]. 
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Proof. The proof follows the proof of Theorem 5.1 in ref. 8 and 
Theorem 3.3 in ref. 7. Define 

At{s:al(s)>~611-~}, 61 >0  

Then (6.11) and ~at( t )  dt=O imply that 361, 62>0:  VIeGk, mes A/>62 
[otherwise L2-norm of al(t) is too small]. For 1r GE define 

A t=  {t: at(t )>>. --1-5 } 

Again mes At> l-io, l>/lo [otherwise ~o l at(t) dt < 0]. Define 

Dk = (tl,t , , . . .):tleAl, l=ko ..... k; <1 
I=  I 

For large k, 

Var al(tl) = [a/(s)l 2 ds< 1/2 
I = k + l  I f f i k + l  

so by Chebyshev's inequality 

and 

{ } Pr >1 ~<1/2 
I =  ! 

k 

PrDk>~(l/2) CI-I l - l~ y~>0, k>~ki(e) 
/ = 1  

For (tl, t2,...)~Dk, 

a,(t,)>J(61 
/ = 1  

Thus 

l -r)-C>16o61kl-~'-C>~63k 1-~, k>~k2 
I~ Gk 

Pr al(tt)>~x=63k l-;' >~PrDk>~exp(-),~k 1+~) 
/ 1 

= exp( - 2~xll + ~)/ll - ~')), x>~xo 

which proves (6.12). Condition (6.13) is established along the same way. 
Theorem 6.1 is proved. 

I . emma 6.2. 3 6 > 0  such that a~(s)=f,(k)(S;Z,~) satisfies the 
condition of Theorem 6.1 with Gk = { 1 <<. 14 k: n(l) ~ M\Q~} and ), = 3/4. 
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ProoL The first estimate in (6.11) follows from (6.5). To prove the 
second estimate, remark that by (6.8) and (6.5'), 

1 
~O (f,,tl)(s; ct)) 2 ds>1 C1-3/2 sin2[nzY(n(l))/2] Z, 

If n(l) e M\Q6, then sin2[nzY(n(k))/2] >~ 62, so 

fo (fnt/)(S; Ct)) 2 ds Cl-3/2~ 2 z~ >t 

which proves the second estimate in (6.11). From (6.10) we obtain that 

Ia~l >~6ok, 6 0 > 0  

Lemma 6.2 is proved. 
Theorem 6.1 and Lemma 6.2 imply (1.39), so Theorem 1.8 is proved. 

Proof of Theorem 1.9 goes along the same lines, so we omit it. 

7. PROOF OF THEOREMS 1.10, 1.11 

Proof of Theorem 1.10. Assume 7 e FI.  As was shown in Section 6, 
/ l=(dx;z) is a distribution of the random series (6.3), so to prove 
Theorem 1.10 we have to prove that the distribution of ~==/(Var ~.~)m 
converges to a standard normal distribution as z ~ 0. To that end we shall 
check that the Lindeberg condition holds for the random series (6.3). 

By the Parseval formula, 

Var r = x2p,(dx;z)= IIf(R+z/2;ct)-f(R;~)llZB~ 
- oo 

= 27t -2 ~ Inl-3 p(n) sinZ[rtzY(n)/2] 
nEZ2\{O} 

By (4.1) this coincides with W(z; ~), so by Theorem 1.3, 

Let 

Varr z ~ O  (7.1) 

tr:=(n)=[Var f,,(t,;z, ot)]m= If,,(s;z,~)l= ds) 1/2 

Then the Lindeberg condition is that for every n E M, 

lim tr~,(n)/Var ~ = 0 
z ~ 0  

(7.2) 
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and for every e > O, 

g:,(e)=(Varr -~ ~ f s2f,(s;z, cQds--*O (7.3) 
n ~ M  I sl >~ ~;(Var ~z=)l/2 

as z--* 0. From (6.2), 

If,,(s; z, ~)l ~< C In1-3/2 ~ k-3/2 Isin[nzY(kn)/2][ 
k = l  

It implies that 

Co ln l - l z l /2  when I n l z < l  
If'(s;z'=)l<<" Coin[ -3n when I n l z > l  (7.4) 

Indeed, if In[ z < 1, then 

~ k -3/2 Isin[~zY(kn)/2]l 
k = l  

=A I/z ~ [kdl-3/2sin(kA)A<~Ci Inll/2z l/z, A=rtzY(n)/2 
k = l  

which proves the first part of (7.4). The second part follows from the 
evident inequality 

k -3/2 [sin[rtzY(kn)/2]l <~ ~ k-3/'- 
k = l  k = l  

Similarly, 

hence 

a~=(n)= If,(s;z,~)12ds~fln1-3 k-Slsin[TtzY(kn)/2][ "- 
k = l  

Co Inl -* z 2 Ilog zl when Inl z < 1 
~r~=(n) ~< Co Inl-3 when Inl z > 1 

Comparing (7.1)with (7.5), we obtain (7.2). 

(7.5) 

sup If,,(s; z, ~)1 >/e(Var ~..=)1/_, = ezU2(1 + o(1 )) 
0~<s~<l  

To prove (7.3), remark that (7.4) implies that for every ~ > 0  the 
inequality 
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holds only for a finite set n ~ M ~ c M ,  which does not depend on z. 
By (7.3), 

g:,(~)-~<(VarG,) -I ~ a2:,(n) 
n E m~ 

and hence the condition lim:~o g~,(e)=0 follows from (7.2). 
Thus, the random series (6.3) satisfies the Lindeberg condition, which 

implies that the distribution of Gd(Var  G,)  1/2 converges to a standard 
normal distribution as z--, 0 (see, e.g., ref. 24). This proves Theorem 1.10 
in the case when y ~ F i .  The same arguments work in the case when 
),~ FI(I-I), so Theorem 1.10 is proved. 

Proof of  Theorem l. l I .  For ~,= {Izl =~-1/2}, (1.41) reduces to 

F(R; ct) = 7r -I  ~ Inl -3/2n- l /4cos[2gmRInl+q~(n;et )]  
n e Z 2 \ { O }  

= ~ { r r  -5/4 ~ Inl 3/2exp[2gl/2RInli+q~(n;ot) i]}  
n~z2\{o} 

= rt-5/4 ~" r,(k) k -3/4 cos(2nl/2Rk 1/2 - 3n/4) 
k = l  

(7.6) 

with 

r,(k) = ~ e(nct) (7.7) 
,,~ z2:,,~ +,~ =, 

Hence 

F(R + z/2; ~) -- F(R; ct) 

= -2rr -5/4 Z r,(k) k -3/4 sin(nl/2zkl/Z/2 ) sin[2ztl/2(R + z/4) k m - 3n/4] 
k = l  

= ~ f , (k ' /2R; z, or) (7.8) 
square  free k 

with 

fk(s; z, 0t) = --2n--5/4 ~ G(12k)(12k)-3/4 sin[nl/2z(lZk)m/2 ] 
/ = 1  

• sin[2nl/2(ls + zlkl/2)/4 -- 3n/4] (7.9) 
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k e N is square free if k = k'l 2 implies / =  1. The numbers {k m, k is square 
free} are linearly independent over Q, so la,(dx;z), the distribution of 
F(R + z/2; ct) - F(R; ~), coincides with the distribution of the random series 

~:~ = ~, fk(kU2tk; z, ct) (7.10) 
s q u a r e  free k 

where t k are independent random variables, uniformly distributed on 
[0, 1]. ~8"71 Let us check the Lindeberg condition for the random series 
(7.10) as z--* 0. 

From (7.8), 

f 
oo 

Var r = x211,(dx; z) 

---- I[F(R + z/2) - F(R; a)l122 

= 2it -5/2 ~ Ir,(k)l z k -3/2 sin2(nt/2zkm/2) 
k ~ l  

. - 2  . - 2  

>~Co ~ [G(k)12k-U2z2>~Co z3 ~ IG(k)l z 
k = l  k = l  

By Theorem D in ref. 8, 

Let 

Hence 

z - 2  

IG(k)l 2 >~z -2 Ilog z[ - l ,  z<~zo(~) 
k = l  

Var G,~> Cz Ilog z1-1, Z~Zo(Ct) 

a:~,(k) = [Var f k ( t k ; z , a ) ] ' / 2 = ( ~  If~(s;z,~)12 ds) '/2 

(7.11) 

(7.12) 

(7.13) 

Then the Lindeberg condition is that for every k e N, 

lim a~,(k)/Var r = 0  
z ~ 0  

(7.14) 

and for every e > 0, 

g :~(~)=(Var~:~)- '  ~ f 
k = 1 Isl > / c I V a r  r 

s2f~(s; z, ~) ds --* 0 (7.15) 
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as z --* 0. Since 

Ir~(k)l ~< C~k ~, V6 > 0 

(see, e.g., ref. 21 ), we obtain from (7.9) that 

Ifk(s; z, c01 <~ C,~ ~ (12k) -~3/4J+'~ Isin(ztl/2zlkl/2/2)l 
/ = 1  

It implies that 

_ fCo(6)zCl/21-2~k-l/2< when k l / 2 z < l  (7.16) 
lf,(s; c t ) l  2", 

~Co(6 ) k -(3/41+~ when k~/2z> 1 

Indeed, if kl/2z < 1, then 

~ (12k) - { 3 / 4 }  + 6 Isin( ~l/2zlk l/2/2 )1 
/ = 1  

= Atl/2j- 2'Sk-13/4~+'~ ~ Jldl -~3/2)+ 2"~ Isin(ld)l .4, d =nl/2zkt/2/2 
/ = 1  

which proves the first part of (7.16). The second part follows from the 
evident inequality 

(12k)-'3/'l'+~ lsin(rt':-zlk'/2/2)l <<,k-'3/"+~ ~ 1 -'3/2,+2~ 
I = 1  I = 1  

Similarly, 

a:2~(k) = I fk(s; z, c~)l 2 ds<~ C~ (12k) -13/21+26 sin2(rcl/2zlkl/2/2) 
I = 1  

Hence 

.< ~ Co(6 ) k - 1/2z2 - 4~i when k l/2z < 1 
a~,(k).~ (Co(cS)k_13/2~+2, _ when k - t / 2 z >  1 (7.17) 

Comparing (7.13) with (7.17), we obtain (7.14). 
Let us prove (7.15). By (7.13) and (7.16), the inequality 

sup Ifk(s; z, c01/> (Var ~=~)1/2 
O~s~<l 

can hold only if 

Co(&) z I 1/2)- 2~ k -  1/2 >1 Cezl/2 Ilog zl -1/2 
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which implies 

k<~g -66, z ~ < , 7 o ( ~ , 6 ,  E ) 

From (7.15), (7.13), and (7.18), 

. - 6,~ 

g._~(e)<~z -l- '~ ~. a_.~(k), z<~zl(ot, f , e )  
k=l 

so by (7.17), 

(7.18) 

- - 66 

g:,(e)~<z - l -~  ~ k - l / 2 z 2 - 5 6 ~ . ~  1-206, z ~ < , z 2 ( o ~ , 6 ,  g )  

k = l  

which proves that l im:_ o g..=(e)= 0. 
Thus the Lindeberg condition (7.14), (7.15) holds, and so the distribu- 

tion of (Var ~:=)-~/2 ~.~ converges to a standard normal distribution as 
z --* 0. Theorem 1.11 is proved. 

APPENDIX. PROOF OF THE FORMULA (4.2) 

We prove in this Appendix the formula 

I = n  - t  l~l-3 p(~) sin z Y(r d~ = Area{Int y} (A.1) 
-o-~ -o2.  

which reduces to (4.2) when Area{Int y} --- 1. To prove (A.I), let us rewrite 
the expression I in a polar coordinate system. Given an angle q0, let ~(q~) 
be the unit vector in R z with this angle, and po(q~)=p(~(tp)) and 
Yo(eP) = Y(~(q~))- 

Then 

 oS? I--- n - l  r -  2po(q~) sin2 [r Yo(~o)] do dr 

= n - I  Po(~P) Yo(~)d~p sin2U du= Po(~P) Yo(~p)d~o (A.2) 
U 2 2 o 

Given a nonzero vector ~ in R 2 with angle ~0, let @(~p) be the angle of the 
point x=x(~p)~y  for which the outer normal is parallel to ~. Define the 
sector 

V(~,~, ~b2)= {x~R2: r < the  angle of the vector x<f f2}  

Then 

po(q~ )Yo(q3~)(~%-~o~)=2Area{(V(~(~o,);r 

822,74/ -2-I5 
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The  last re la t ion  holds,  since the set V(~O(~0t); O(~o,_))n Int  y can  be well 

a p p r o x i m a t e d  by a t r iangle  with the basel ine A s =  (~o 2 - q)~)po(~O~) and  the 
height  Yo(~0). Hence ,  we get, by a p p r o x i m a t i n g  the in tegra l  by the usual  

a p p r o x i m a t i n g  sum tha t  

f ~  po(q~) Yo(q~) d~0 = 2 Area  In t  

The  last ident i ty  t oge the r  wi th  (A.2) imply  fo rmula  (A.1). 
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